• Users Online: 516
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2015  |  Volume : 5  |  Issue : 1  |  Page : 15-20

Comparative evaluation of antimicrobial and physical properties of a newer dentin bonding agent with cetylpyridinium chloride: An in vitro study

Department of Pedodontics and Preventive Dentistry, Bapuji Dental College and Hospital, Davangere, Karnataka, India

Correspondence Address:
Archana P Betur
Department of Pedodontics and Preventive Dentistry, Bapuji Dental College and Hospital, Davangere - 577 004, Karnataka
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2231-6027.171154

Rights and Permissions

Context: Though adhesive systems in restorative dentistry possess many advantages, secondary caries is still a problem to be contended with. Addition of antibacterial agents could possibly be a potential remedy for this recurring problem. Aims: To evaluate and compare in vitro the antimicrobial property, microleakage, and shear bond strength of G-Bond (one component self-etching light cured adhesive) with different concentrations of cetylpyridinium chloride (CPC). Settings and Design: In vitro intergroup experimental randomized control trial. Subjects and Methods: The in vitro study with the study groups Group I: G-Bond, Group II: G-Bond with 1% CPC, and Group III: G-Bond with 3% CPC was tested against the clinical isolates of Streptococcus mutans through the direct contact test determining the turbidometric bacterial growth using spectrophotometer. The microleakage was tested using dye penetration method and the shear bond strength of the three groups was tested using universal testing machine. Statistical Analysis Used: The data were analyzed using paired t-test, one-way ANOVA, followed by post-hoc Tukey's test. For all the tests, a P ≤ 0.05 was considered for statistical significance. Results: G-bond with 3% CPC showed the highest rate of antibacterial activity against S. mutans than other two groups (highly significant P < 0.001). However, microleakage and shear bond strength between the groups did not show any statistically significant change. Conclusions: G-Bond with 3% CPC additive was effective against S. mutans.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded161    
    Comments [Add]    

Recommend this journal